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ABSTRACT

"/ The estimation of arrival direction is an important task in signal
processing and has recently received considerable attention in the literature.
In this paper, the authors proposed a method to estimate the direction of
arrival and proved the strong consistency of ;he estimates for both cases in

presence of white noise and colored noise. R '
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f 1. INTRODUCTION

Since the work of Schmidt (1981) and that of Bienvenu (1979), which

wolul

in turn were extensions of Pisarenko (1973), the eigenstructure methods

s for direction of arrival (DOA) have been developed rapidly in the past few

‘4 years, and have attracted considerable interest. When the additive sensor

™ noise is spatially white, Wax, Shan and Kailath (1984) proposed a method

{: for estimating the DOA. This method is based on the fact that the DOA

L)

fs ' vectors are orthogonal to those eigenvectors of the true covariance matrix

tf of observations associated with the smallest eigenvalue. In some cases,

> the noise is not spatially white and its covariance is unknown and in this
13 case the algorithm of Wax, Shan and Kailath is no longer appliable. In these
;: cases, Paulraj and Kailath (1986) proposed a method to estimate the DOA based

> on the difference of two covariance matrices. Their method relies on the fact
;2 that the DOA vectors are orthogonal to the eigenvectors of the difference

! matrix associated with the zero eigenvalue. Both methods of Shan-Wax-Kailath

: and Paulraj-Kailath are based upon finding the infimum of a Hermitian form

% with constrained variables.

J However, though simulation results strongly supported the above two methods
7 for estimating the DOA, it is not an easy task to find the solutions for the

E infimum of the constrained Hermitian form. In the present paper, we investigate
s the estimation of DOA for both cases where the noise is white or colored. 1In the
S argorithm for estimating the DOA, we only need to solve a polynomial equation
; whose degree is just the number of signals. Also, we shall prove that this

s

estimate is strongly consistent under minor moment restrictions. In another

paper (in preparation) we shall investigate the asymptotic normality of these
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estimates.

The organization of this paper is as follows: In Section 2, we shall
describe the algorithm for estimating DOA when the noise is spatially white
and prove the strong consistency of these estimates. In Section 3, we shall
briefly describe the procedure for finding the estimate of number of signals
by using information theoretical criteria and the estimate of DOA by the
proposed method when the noise is colored. We only point out that these
estimates are also strongly consistent and omit the details, because the
proofs are almost the same as the proof for the strong consistency of signal
number estimate (see Zhao, Krishnaiah and Bai (1986 a,b) and the proof given

in Section 2 for the strong consistency of estimtes of DOA.

-~ o)
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2. ESTIMATE OF DOA IN THE PRESENCE OF SPATIALLY WHITE NOISE

Consider the model
:_:(t) = As(t) + g(t), t =1,2,...,N, (2.1)

where x(t): pxl, the observations received by p sensors, §(t):qX1, the signal

vector emitted by q sources, q < p, n(t) is the white noise vector, A = (gl,....gq)
“Iwo Ty ERNCRN

and a, = (1,e ) )7, called the direction-frequency vector

-k
associated with the ktb signal j = /1, wg the center frequency of signals and
T = % sin Bk, A the spacing between sensors, c the speed of propagation and
6k the direction of kth signal. Since Wy is known, we can assume wy in the sequel.
It is usual to assume that
(i) {§(t)} are independent and identically distributed (i.i.d.), {Q(E;;\

are i.i.d., and independent of {s(t)} . |

(ii) Es(t) = 0,En(t) = 0, Es(t)s*(t) = ¥ > 0, \ (2.2)
Eg(t)g*(t) = ozIp with 02 unknown,

(III) ~«,'s are distinct,

k

where * denotes complex conjugate transpose.

Under the model (2.1), our problem is to find an estimate of tk's based

on the sample covariance matrix
N
L= ) x(i)x*(i).
=] - -

Z|—

i

The covariance matrix of x(t) is given by

I = AYA* + ozIp

"’Y"‘ ' 4% Y W W Rt E% 0 NS o« " [rgl e '\""f""'-v " "\W?}’\-"’ ‘.f-‘f"*~“v'?f\f-‘f:r \}'\"- '\’\“"‘
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1 =72

respectively. Also, let e

associated with these A's and §'s respectively. Without loss of generality, we

1-"2

Denote by A, > A, > ... > Ap and 6§, > 46, > ... > ép the eigenvalues of I and T

..,ep and ul,...,up denote the eigenvectors

assume that u's are of unit length and orthogonal of each other, and the same

is true for e's. If the number of sources is q, then we have

A, > A

1 > ... 2 > =...=)\p(=02).

2 - q q+l

The key steps of Wax - Shan - Kailath -algorithm are as follows. - First,
determine the number of sources q. Next, find the so-called noise subspace as -
the span of the eigenvectors corresponding to the minimal (noise) eigenvalues

02 of Z. The subspace spanned by the direction vectors of the impinging signal
wavefronts, which is called signal subspace, can be obtained as the orthogonal
complement of the noise subspace. For determining the DOA's, they plotted the

inverse Hermitian form that measures the orthogonality between the direction

vectors and the noise subspace, i.e.,

() _ o oae(E)(B)y -1
Hy"' = [éeEn E ge] (2.3)
where a, = (1,e-je,...,e_j(p-l)e)T and Eﬁz) is an px(p-q) matrix whose columns

are the eigenvectors associated with the minimum eigenvalues of £. They pointed

out that, ''Ideally, aelEgz), for 6 = ek, and hence HEZ) should become very large

at these ek, enabling us to pick out the source directions.'" In other words,

they might extract these 8. 's by seeking for the extreme points of Héz)-l, a

k
polynomial of 38 with degree 2(p-1).

But there are two problems: (1) We do not know the number of the extreme points.

(2) No method is proposed to extract the desired q ek's from these extreme points.
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Now we introduce a new method as follows:

Since the information theoretic criterion (ITC) gives strongly consistent
estimate of the number of signals, we can assume that q is known throughout
this section. (refer to Zhao, Krishnaiah and Bai (1986a]).

Write

W, = (

N su_ ). (2.4)

3q+1"" 4

By a knowledge of linear algebra, there exists an unitary matrix ON:(p-q)X(p-q),

such that

WOy = (9q+1""’9p) = () 1<i<p, q+l<k<p
with ﬁik =0, for k = q+1,...,p-1 and i = k+1,...,p, (2.5)
u.. 2 0, for i = q+1,...,p.

Also, if all ﬁii > 0, then 0N is uniquely determined.
Let z, = p exp(Jrk), k=1,2,...,9 be roots of

q+l

_ k-1
B(z2) = kzl 9k,q+lz

(2.6)

where 6k > 0 and %kG[O,Zn). Then we take %k’ k=1,2,...,q as the estimates

Remark 2.1. Sometimes, may be zero. In such a case, there may

uq+1,q+l

be less than q roots for B(z), and we can not get q estimates of Tk's. However,

in the large sample case, we can prove that with probability cne, >0

Ya+l,q+l
for large N.

Remark 2.2. Using the Schmidt orthogonalization procedure, we can seek

for 0N and (uik)'

------
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Remark 2.3. Using our method, we do not bother about answering the two

problems mentioned above.
In the sequel, we will establish the strong consistency of %k's. Before
doing that, we introduce the following lemma.

Lemma 2.1. Let A = (aik) and B = Oﬁk) are two Hermitian pxp matrices with

spectrum decompositions

A= ] Sjuuy, 8 28, > 2 8
i=1
and
p %
B= ) A v.v., A, 22X, > ... 24,
j=p i-i-i 1-"2- =-'p

where §'s and A's are eigenvalues of A and B respectively, u's and v's are
orthogonal unit eigenvectors associated with §'s and A's respectively. Further,

we assume that

and that
|aik-bik’ <a, i, k=1,...,p.

Then there is a constant M independent of a, such that
(i) |6i-Ai| < Ma, i=1,2,...,p

n

h *  Ch h .
(ii) z u.u, = 2 v.v, + C( ) with
i=n, 417770 jan 417
h-1 h-1
¥ LHRLNL SRS S L I S U S I G P R TR I T LI PV, PRI 0 A% W T T I LIV T A P ] .- P AT A SO IO A s
-l A - f}. L .l - -oOv o W9 '+ ' f{’ o‘na ‘ ,"f" Bl " -
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& ™ = (M), 1eP] < My 2, k= 1,2,00000, B = 12,0008,

¥

p
~ Proof. By Von-Neumann's inequality, one can easily obtain

&-

. P 2 2

» .2 (Gi-ki) < tr(A-B)7,

L i=1

"

0
- which implies (i) with M = p.

N, For simplicity, we denote by D = 0(a) the fact that |dik‘ < Ma, i=1,2,...,m,
L9 ’
’3 k=1,2,...,n for any mxn matrix D = (dik). To prove (ii), without loss of
% generality, we can assume

~

- s -~ % 5 - %

X A= T A ] . B= YA ) v,

. &, h, ~i~1 L."h, ~i~1

__-‘ h=1 1€Lh h=1 J.GLI’1
i where Lh = {nh-l+1""’nh}' When s = 1, (ii) is trivial. Now we assume (ii)
N is true for s = t-1, and proceed to prove (ii) for s = t. When s = t,
= t-1 - - o t-l - - *

o D Oy 2) ) wug 2 (A A) L oveve + 0(a). (2.7)

h=1 iGLh - =1 iGLh

&

. Multiply from right hand by Vi k€Lt in the two hand sides of (2.7), we get
L

N~

-~ t-1 - - .

f: Z(Ah t é Ei(BiYk) = 0(a)

: Ly
-

2 which implies that
o % '

o = i
‘f uv 0(a), 1€LS, k€L _,

2
'i Thus, we have
A UV, = o ViU, = o (2.8)
N Vg = 0a)s VU, = 0Ca), :
' |
3 !
'\-_.'\ '\-‘n.‘.-\- ~ w ~ -\._p \,*. " \',,\_’\_‘.\.}s._s;_x;,\:.\;.\.' e NN AL B TN AT AR A

LA e aadg ta l et
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"
X
)
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R
i ]
K
Y where
o
n! =
M U, = (u,5...,u ), U, = (u yesesu_ ), n_ = p,
: 1 -1 Ny 2 -0, _ 1 -0, t
X
" V, = (v, ...,V Y, V., = (v seeesV_ )
f 1 -1 -n. g 2 -nt_1+1 -n,
e
( Put U, = V.G, + V,G,, where G,: n__,x(p-n _;), G,: (p-n _,)x(p-n__,). By (2.8),
)
. £ % % % % 2
‘ VoUpUpVy = V(I -U U V) = V)V, + 0(a")
=1 + 0(a) (2.9)
- P
; By (2.8) and (2.9), we get
5
- %
0(a) = ViU, = G, +V V.G, =G,
: which implies that
X
U, = V.G, + 0(a). (2.10)
v
}
j By (2.9) and (2.10),
!
G * V*V *V*V V* *V + 0(a)
' 282 = VaVp6,6,V)V, = VpUUpV, + Ola
ﬁ
N =1 + 0(a) (2.11)
Py
: From (2.10) and (2.11), it follows that
. % * * %
. 2 u,u, = U.U, = V.V. + 0(a) = z v.v, + 0(a), (2.12)
A ~i~1i 272 22 ~i~i
i€eL i€l
t t
¥
L
' and that
! J 3 3 3 S L"), “pw s RS A A i " N R At N B
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3
)

tiz_ % . 2 *
1 A u,u, + A u.u,
' - h ~i-i t-1 ~i-i
! hel "i€L_ i€L__ +L
:i
K t=2_ .
\ ) hzlxhgé it At-ligL b BT T O
: t -1l
N
b, By the induction assumption,
¢ % 13
Y 2 uwu, = 2 vV, + 0(a), h=1,...,t-2, (2.13)
4 iﬂh~' iﬂm'

and

‘ % *
! ) uu, = 2 vy, + 0(a). (2.14)
: €L, i€L__ 4L,

. Thus, (ii) is true for s = t by (2.12) - (2.14). Lemma 2.1 is proved.

N We have the following:

¥

&

o THEOREM 2.1 Suppose the 4th moments of s(t) and n(t) are finite. Then

the estimates ?k's are strongly consistent.
T

} Proof. Let b = (bl’b2’°"’bq+1’o""’0) be the pxl vector whose elements
» q
b,,b,s...,b are the coefficients of the polynomial b it (z-ejtk) & f(z)
1°72 q+l q+1k=1

[ q+1 2
: with restrictions ) Ibkl =1 and b > 0.
. k=1 q+l
. T

Let g4l = b, Ng#2 ™ (O,bl,bz;...,bq+1,0,...,0) ’:"’Qp = (o,...,o,bl,...,
v bq+1)T be all px1 vectors. From aknq+£ = ej(z-l)ka(eJTk) =0, k=1,2,...,q,
l *
: L=1,...,p~q, it follows that nq+1,...,np are all eigenvectors of AYA associated
u. ~ -~
)

with zero eigenvalue. Since they are linearly independent, they span the eigen-

*
subspace of AYA  associated with zero eigenvalue. Let l@ denote this subspace

o v LI

T PR A Y T L IO LI P L | LTI AL v
> 44 . o A’ '.' T TN T .'-.""" NN N \4'* .o N '\ M N

[ « 0) Wiy P ﬁt‘ft(lvxlf
‘.‘\’t.!_ q"‘n".t" ." g'\.'i‘.'.; c". &J‘ l. .1"-0 )
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P
and let P, (u ) =) (N)n denote the projection of u

B on v,. By the
q+1 k=q+1 k -~k q+l 2
strong law of large numbers, we have
- % 2
T>I=A¥YA +o Ip, a.s. as N »> «
by Lemma 2.1, it is easy to see that
Ul = P (uq+1) +0o(l) a.s. as N> (2.14)

Since u q+1,2 = 0 for ¢ = q+2,...,p, Wwe see that the last p-q-1 components

of P (u

Sg+) =

L]
~10
™

=~
4

S

]

Kk tend to zero almost surely. From this and the

expressions of Ng* k = gq+l,...,p, noting that bq+1 are. positive constants,

we get
lim B(N) =0 a.s. for k= q+2,...,p
Noe
and
lim B(N) a.s.,
N->oo
which implies that
u b, a.s. as N » o, (2.15)

~q+1 > Qq+l =2

By the definition of 9, we know that eJTk, k=1,2,...,q, are the roots
of the polynomial equation

+1
b
k=1

k-1
kZ 0. {2.16)

Hence, after suitable rearrangement,

-t -« » Iv'v.d‘q'(l""\\"|| v, v"‘l "‘
"‘-“.oh"‘i\l'l.\‘l'b o'!.. ,g“.n't.n's‘. IRUSARA A ] ‘.o‘ﬂ'\i .t..‘.l 0 I 0 W uﬁ.‘ SRR S AN AN SN AR et )

A0




pke > e » a.s., k=1,2,...,q.

i and consequently,

which proves the theorem.

Remark 2.4. If q is known, to ensure the strong consistency of %k's,

we only need te assume the second moments of §(t)'s and n(t)'s. But in ITC

2]

i procedure, to guarantee the strong consistency of the estimate of the signal
>

ﬁ number, we assumed the hth moments of s(t) and n(t) exist. (Refer to Zhao,
o

: Krishnaiah and Bai [1986a]). Therefore in this theorem we still assume the

4th moments exist, so that the conclusion of Theorem 2.1 is still true by

using the ITC estimate of signal number q instead of q when q is unknown.

. e YT . r 1 . " e A T T N P AN T TS .t - W™
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NE'HY

K’ k=1,2,...,9, a.s. as N> = (2.17)

> o
(2
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3. ESTIMATE OF DOA IN THE PRESENCE OF COLORED NOISE

In the section 2, we obtain an estimate of DOA's when the additive sensor
noise is spatially white. When the sensor noise is colored, the case is more
complicated. For this case, Paulraj and Kailath (1986) : propused a
solution to the DOA estimation problem. Their technique is applicable to
situations where it is possible to obtain two estimates of the array covariance
in which the unknown noise field remains invariant while the signal field under-
goes some change. This method is based on computing the difference of the two
measured covariances, thus subtracting out the unknown noise covariance and

leaving only the difference matrix of the two signal covariance.

Assume that there are two estimates of the array covariance with the

array being displaced between the measurements. This displacement could be

of several types. Examples of spatial displacements are rotations, translations,
or a combination of the two. Displacements can also be of a temporal nature
with the noise statistics being long-term stationary, while those of the signals
are only short-term stationary. For the details, refer to Paulraj and Kailath
(1986). Here we assume that the noise covariance matrix is invariant across

the two measurements while the signal covariance matrix and the DOA's change in

some manner between the measurements. Thus we have the following model:

5(1)(t) = A(2)§(2)(t) + g(“)(t). t=1,2,...,N, ¢ =1,2 (3.1)

§(z)(t):qIXI. the signal vector emitted by q, sources, L =1,2, n(z)(t) is the

colored noise for the Eth measurements, A(Q) = (a(g),...,a(g)) and a(z) =

a K
1 -~
(2) (2)
(1,6 3%k, o 3PVt T 1,2,...,q; and & = 1,2.

I.I\‘

: pxl, the observations received by p sensors for the Zth measurements,
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It is usual to assume that

(i) For each 2, 2 = 1,2, {§(£)(t)} iid., {9(2)(t)} iid., and independent
of {5(1)(t)}, -

(11) £V () =, En'Y(e) = 0,
E§(£)(t)§(£)*(t) = v(z) > 0, / (3.2)

%
BP0 =550, 1= 1,2, £ = 12,08,

(1) ,(2)

where ¥ , ¥ and 5. are all unknown.

The covariance matrix of x(l)(t) is given by

(2) _ ,(2)y(2),(2)*

pX + £gs L =1,2.
For the translational invariance model, we know that A(l) = A(z), and
%

(1) (2) (1) (1) _y(2)), (1% (3.3)
where we assume that w(l) - w(Z) is of rank 9, and q1< p. Also, we assume
that tél)'s are distinguished. This means that A(l) is of full rank (i.e., = ql).

For other invariance models, we have
«D 4
: %
L1 (@) (A(l)’l,‘(z))(.0 @) () Ay (3.4)
were we assume that Til)'s and tiz)'s are all distinguished and qu <p. In

(1),

this case, (A A(z)) is full rank (i.e., = qu).

1) (2)

For the model (3.3), we write A = A ¥ = Y(l) -y “’, and q = q-
(1) ,@)y g. (¥ o,
For the model (3.4), we write A = (A*"/,A*°7), ¥ = 0 _W(Z)' and q = 2q1.

Put

\ o)y \-} ’ V}\;.‘-’\‘ . -‘ A ' \(\
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Let A, 24, 2 ... 2 Aq > Aq+1 = ... = Ap = 0 and 61 > 62 2 00 2 Gp denote

a A 2 .
the eigenvalues of (21—22)2 and (zl-zz) respectively. Take CN satisfying

C C

N N
N 0 and Toglogh > o as N + =, (3.5)
Write
( ) g : (3.6)
I(k,C,) = N §. + k Cy, 3.
N {=k+l N
and define q as follows
I(q,CN) = min{I(O,CN),...,I(p-l,CN)}. (3.7)

We have the following

THEOREM 3.1. Suppose that (3.2) holds, A is of rank q and the Ath moments

of n(g)(t) exist for ¢ = 1,2. Then q is a strongly consistent estimate of q.

Proof. By the law of the iterated logarithm, for 2 = 1,2,

S t———

EZ =5+ O(V/éloglogN) a.s. as N+ =, (3.8)
Using Lemma 2.1, we have
lim 61 = Ai a.s., i=1,2,...,p. (3.9)

N>

Since the matrix 21- 22 is of rank q, there exists a px(p-q) matrix QgQO = Ip-q
and Qg(zl-zz) = 0. It is well known that

T > 2.2
6i = min trQ (21-22) Q. (3.10)

imq+l QTQ' Ip )

q
By (3.8),

i X

o o fon )
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;k
$ Qg(zl-zz) = Qg (21'22‘(21-22)) = 0(v/ ﬁloglogN), a.s. (3.11)
d By (3.10) and (3.11),
iy

5 E T 2% 2 1
! 0 < Z 8§, < tr Q.(Z,-5,)°Q, = 0(5loglogN), a.s. (3.12)
v - i- 0"" 727 "0 N

. i=q+1

A

2 Using (3.9) and (3.12), noticing that Aq > 0, we can easily prove that, with
.f probability one for N large,
@
&
$ I(q,Cy) < I(k,C\), k #gq, k < p-1,

. which implies that
q=q
i
< Theorem 3.1 is proved.
x Lk

W In the sequel, we assume that q is known. Write ¥ = YA A¥, then (21-22)2
<

5 can be rewritten as

‘ 2 *

; (£,-5,))" = AvA .
> Note that A is of the form A = (31,...,aq) with

Co. A 3Dy ¢

N a = (1,e N - ), k=1,...,q,

M -
o
;u where rk's are distinguished. So the problem of estimating the DOA's reduces
] the case of section 2. Let El”"’gp denote the eigenvectors of (51-52)2

;‘ associated with 61,...,6p. Based on WN = (Bq+1""’9p)’ we can use the method
o)

proposed by us in the section 2, and take ;k’ k=1,2,...,q9, as the estimates of

-
-

q tk's. In the same way, we have

-,

- -
e - -
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A e .-

. THEOREM 3.2. Under the conditions of Theorem 3.1, ?k's are strongly

consistent estimates of rk's.

) Remark 2.4 also applies to this case.
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